Free Access
Volume 422, Number 3, August II 2004
Page(s) 883 - 905
Section Extragalactic astronomy
Published online 16 July 2004

A&A 422, 883-905 (2004)
DOI: 10.1051/0004-6361:20035722

Dense gas in nearby galaxies

XVI. The nuclear starburst environment in NGC 4945
M. Wang1, 2, C. Henkel1, Y.-N. Chin3, J. B. Whiteoak4, M. Hunt Cunningham5, R. Mauersberger6 and D. Muders1

1  Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
2  Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing, PR China
3  Department of Physics, Tamkang University, 251-37 Tamsui, Taipei County, Taiwan
4  Australia Telescope National Facility, CSIRO Radiophysics Labs., PO Box 76, Epping, NSW 2121, Australia
5  School of Physics, UNSW, 2052 Sydney, Australia
6  IRAM, Avenida Divina Pastora 7, Local 20, 18012 Granada, Spain

(Received 21 November 2003/ Accepted 7 April 2004)

A multi-line millimeter-wave study of the nearby starburst galaxy NGC 4945 has been carried out using the Swedish-ESO Submillimeter Telescope (SEST). The study covers the frequency range from 82 GHz to 354 GHz and includes 80 transitions of 19 molecules. 1.3 mm continuum data of the nuclear source are also presented. An analysis of CO and 1.3 mm continuum fluxes indicates that the conversion factor between H 2 column density and CO  J=1-0 integrated intensity is smaller than in the galactic disk by factors of 5-10. A large number of molecular species indicate the presence of a prominent high density interstellar gas component characterized by $n_{\rm
H_2}\sim 10^5$ cm -3. Some spectra show Gaussian profiles. Others exhibit two main velocity components, one at ~450 km s -1, the other at ~710 km s -1. While the gas in the former component has a higher linewidth, the latter component arises from gas that is more highly excited as is indicated by HCN, HCO + and CN spectra. Abundances of molecular species are calculated and compared with abundances observed toward the starburst galaxies NGC 253 and M 82 and galactic sources. Apparent is an "overabundance" of HNC in the nuclear environment of NGC 4945. While the HNC/HCN  J=1-0 line intensity ratio is ~0.5, the HNC/HCN abundance ratio is ~1. From a comparison of  $K_{\rm a}=0$ and 1 HNCO line intensities, an upper limit to the background radiation of 30 K is derived. While HCN is subthermally excited ( $T_{\rm
ex}\sim8$ K), CN is even less excited ( $T_{\rm
ex}\sim3{-}4$ K), indicating that it arises from a less dense gas component and that its N=2-1 line can be optically thin even though its N=1-0 emission is moderately optically thick. Overall, fractional abundances of NGC 4945 suggest that the starburst has reached a stage of evolution that is intermediate between those observed in NGC 253 and M 82. Carbon, nitrogen, oxygen and sulfur isotope ratios are also determined. Within the limits of uncertainty, carbon and oxygen isotope ratios appear to be the same in the nuclear regions of NGC 4945 and NGC 253. High  18O/ 17O, low  16O/ 18O and 14N/ 15N and perhaps also low  32S/ 34S ratios ( $6.4\pm0.3$, $195\pm45$, $105\pm25$ and  $13.5\pm 2.5$ in NGC 4945, respectively) appear to be characteristic properties of a starburst environment in which massive stars have had sufficient time to affect the isotopic composition of the surrounding interstellar medium.

Key words: galaxies: abundances -- ISM: molecules -- galaxies: individual: NGC 4945 -- galaxies: starburst -- galaxies: ISM -- radio lines: galaxies

SIMBAD Objects

© ESO 2004

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.